翻訳と辞書
Words near each other
・ Kernel (algebra)
・ Kernel (category theory)
・ Kernel (digital media company)
・ Kernel (EP)
・ Kernel (image processing)
・ Kernel (linear algebra)
・ Kernel (operating system)
・ Kernel (set theory)
・ Kernel (statistics)
・ Kernel adaptive filter
・ Kernel debugger
・ Kernel density estimation
・ Kernel eigenvoice
・ Kernel embedding of distributions
・ Kernel Fisher discriminant analysis
Kernel function for solving integral equation of surface radiation exchanges
・ Kernel Independent Transport Layer
・ Kernel marker
・ Kernel method
・ Kernel methods for vector output
・ Kernel Normal Form
・ Kernel panic
・ Kernel patch
・ Kernel Patch Protection
・ Kernel perceptron
・ Kernel preemption
・ Kernel principal component analysis
・ Kernel random forest
・ Kernel regression
・ Kernel relocation


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kernel function for solving integral equation of surface radiation exchanges : ウィキペディア英語版
Kernel function for solving integral equation of surface radiation exchanges

In physics and engineering, the radiative heat transfer from one surface to another is the equal to the difference of incoming and outgoing radiation from the first surface. In general, the heat transfer between surfaces is governed by temperature, surface emissivity properties and the geometry of the surfaces. The relation for heat transfer can be written as an integral equation with boundary conditions based upon surface conditions. Kernel functions can be useful in approximating and solving this integral equation.
== Governing equation ==

The radiative heat exchange depends on the local surface temperature of the enclosure and the properties of the surfaces, but does not depend upon the media. Because media neither absorb, emit, nor scatter radiation.
Governing equation of heat transfer between two surface ''A''''i'' and ''A''''j''
: q(r_i) = \int_^\infty \int_^ \int_^\frac \varepsilon_ (\lambda,\psi_i,\theta_i,r_i) I_(\cos\theta_i\sin\theta_i)\,d\theta_i\,d\psi_i\,d\lambda - \sum_^N \int_^\infty \rho_(\lambda,\psi_,\theta_,\psi_j,\theta_j,r_i) I_(\lambda,\psi_k,\theta_k,r_i) \frac \, dA_k
where
: \lambda = \text,
: I = \text,
: \varepsilon = \text.
: r = \text
: \theta = \text
: \psi = \text
If the surface of the enclosure is approximated as gray and diffuse surface, and so the above equation can be written as after the analytical procedure
: q(r) + \varepsilon(r)E_b = \varepsilon(r)\oint K(r,r') \left(E_b(r')+1-\fracd\Gamma(r')\right )
where E_b is the black body emissive power which is given as the function of temperature of the black body
: E_b(r) = \sigma T^4(r)\,
where \sigma is the Stefan–Boltzmann constant.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kernel function for solving integral equation of surface radiation exchanges」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.